On the Growth Rate of Generalized Fibonacci Numbers

نویسنده

  • DONNIELL E. FISHKIND
چکیده

for all nonnegative integers i, j such that j ≤ i, as illustrated in Figure 1.1. The points in R2 associated with ( i j ) , ( i+1 j ) , and ( i+1 j+1 ) form a unit equilateral triangle. This arrayal is called the natural arrayal of Pascal’s triangle in R2. For all t ∈ R : −√3 < t < √3 and nonnegative integers k, define k(t) to be the sum of all binomial coefficients associated with points in R2 which are on the line of slope t through the point in R2 associated with ( k 0 ) . It is well known that { k( √ 3/3)}k=0 is the Fibonacci sequence F0,F1,F2, . . . , and { k(− √ 3/3)}k=0 is the sequence of every other Fibonacci number F0,F2,F4, . . . , as illustrated in Figure 1.1; for a fixed t, the sequence { k(t)}k=0 is called the generalized Fibonacci sequence induced by the slope t. Generalized Fibonacci numbers arise in many ways; for example, for any integers a, b : 1≤ b ≤ a, the number of ways to distribute a identical objects to any number of distinct recipients such that each recipient receives at least b objects is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

GENERALIZED q - FIBONACCI NUMBERS

We introduce two sets of permutations of {1, 2, . . . , n} whose cardinalities are generalized Fibonacci numbers. Then we introduce the generalized q-Fibonacci polynomials and the generalized q-Fibonacci numbers (of first and second kind) by means of the major index statistic on the introduced sets of permutations.

متن کامل

Coefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers

In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers.  Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.

متن کامل

Non-Abelian Sequenceable Groups Involving ?-Covers

A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...

متن کامل

A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$

In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004